Каталог интернет магазинов
Обсуждение, отзывы, рейтинги, комментарии об интернет магазинах
ShopAudit - Каталог интернет магазинов
Поиск
я ищу
и     или    целиком
в категории
Каталог интернет магазинов
Все сферы
CD-диски, DVD, кассеты
Автомобили и мотоциклы
Антиквариат, искусство
Аптека
Бытовая техника
Детский мир
Животные и растения
Книги
Компьютеры
Красота и здоровье
Мебель, интерьер
Одежда, обувь, кожгалантерея
Офис
Подарки, сувениры, цветы
Продукты, напитки, табак
Разное
Секс-шопы, интимные товары
Спорт, охота, туризм
Строительство и ремонт
Телефоны и связь
Торговые системы
Услуги
Фототовары
Хозтовары
Часы
Электронные товары

/ Главная / Бытовая техника / Видеотехника

Отзывы об интернет магазине Pixelive.ru



» Посмотреть информацию об интернет магазине
Заказ 10 июля 18.07.2017 в 11:23
Написал(а): Снежанна Огородникова положительный
Заказала здесь проектор в подарок на свадьбу своей подруге. Она занимается фотографией и видеосъемкой, поэтому часто смотрит свои творения на большом экране. Мне показалось, что купить проектор будет хорошей идеей, и размер изображения будет соответствующий.
Доставили очень быстро! Посылка пришла ровно в срок, так что подарок не сорвался.

Выбор моделей на сайте порадовал.
Компетентный менеджер по телефону сопроводил меня на всем протяжении заказа.
Ответ Дмитрию 17.07.2017 в 09:54
Написал(а): Менеджер Pixelive положительный
Уважаемый Дмитрий!
Спасибо Вам за отзыв, но хочу Вам ответить следующее:
У всех менеджеров каждого магазина есть план продаж, который составляется руководством магазина. Вы видимо попали как раз на тот день, когда в плане стоял другой проектор. Но Вы в полном праве отказаться. Что Вы и сделали.

В связи с этим, прошу не определять наш интернет-магазин подобным словом.

Всего Вам доброго!
pixelive.ru мошенники! 13.07.2017 в 20:41
Написал(а): Дмитрий отрицательный
Вводят в заблуждение, все товары выставлены, чтобы завлечь клиента, после звонка начинают впаривать, что-то совсем другое. Будьте осторожны!
Я пробовал заказать у них XGIMI H1, естественно в наличии не было.
! 21.06.2017 в 10:11
Написал(а): Анатолий положительный
Заказал себе домой проектор в данном интернет-магазине. Необходим был маленький , портативный шустрый проектор, чтобы можно было и домой и с собой на дачу возить. Не хотелось покупать большой и габаритный, о чем и было сказано оператору магазина. Поговорили. решили брать определенную модель, оформили доставку. Собственно, все прошло гладко, ничего плохого отметить не могу!
Довольна сотрудничеством! 19.06.2017 в 09:41
Написал(а): Светлана К. положительный
Я осталась полностью довольна! Когда же уже сайт сделает возможность оставления фотографий чеков!?
Из всего огромного ассортимента привлек проектор , обговорили с менеджером все детали, и вот уже через неделю проектор был доставлен ко мне домой.
Ничего не ломается, по сборке и работе вопросов нет!
gdfgdg 16.06.2017 в 16:37
Написал(а): hgmngv положительный
Yoa aeiioaca auea i?iaa?aia aey ~s0 n aanii 6 16.
Aeiioaca 2. Ana cia?aiey ?(~s), ~s ? B e 1 eeiaeii iacaaeneiu iaa Q.
Anee aeiioaca 2 aa?ia, oi i?aanoaaeaiea a aeaa eeiaeiie oi?iu ec
aeiioacu 1 aaeinoaaiii. Ec yoeo aaoo aeiioac neaaoao, ?oi ?acia?iinou
eeiaeiiai i?ino?ainoaa, ii?i?aaiiiai e?aoiuie acaoa-cia?aieyie aana
w ?aaia dw, aaa ?enea dw ii?aaaey?ony i?iecaiayuae ooieoeae
X
?
w=0
dwx
w =
1
1 ? w2 ? w3
.
Oae eae ?({2}k) = ?
2k(2k + 1)!, oi yoe cia?aiey e??aoeiiaeuiu (e
aa?a eeiaeii iacaaeneiu iaa Q ia?ao niaie e 1). Oae?a, ii oai?aia
Aia?e, e??aoeiiaeuii ?enei ?(3). Ioiineoaeuii a?eoiaoe?aneeo naienoa
?(~s) i?e a?oaeo ~s ? B ieeaeie ii?aaaeaiinoe iiea iao.
Ionou eaeia-oi ?(~s0) ? Q, w(~s0) ia?aoii. Anee ?(~s0)?(2k) i?aanoaa-
eyaony a aeaa eeiaeiie eiiaeiaoee n ?aoeiiaeuiuie eiyooeoeaioaie
?enae ?(~s), ~s ? Bw( ~s0)+2k (a oae e aie?ii auou ii aeiioaca 1), oi neaai-
aaoaeuii n?aae yoeo ?enae anou oioy au iaii e??aoeiiaeuiia. Iai?eia?,
anee ?(2, 3) ? Q eee ?(3, 2) ? Q, oi iaii ec ?enae ?(3, 2, 2), ?(2, 3, 2) e
?(2, 2, 3) e??aoeiiaeuii. Aiaeiae?ii, anee eaeia-oi ?(~s0) ? Q, w(~s0)
?aoiia e ?(~s0)?(3) i?aanoaaeyaony a aeaa eeiaeiie eiiaeiaoee n ?aoei-
iaeuiuie eiyooeoeaioaie ?enae ?(~s), ~s ? Bw( ~s0)+3, oi n?aae ieo anou oioy
au iaii e??aoeiiaeuiia.
Aaeaa iu aiea?ai iaeioi?ue ?acoeuoao i eeiaeiie iacaaeneiinoe
e?aoiuo acaoa-cia?aiee.
Eaiia 2.9 Ionou x ? Q, ?enea yi
, i = 1, . . . , k oaeea, ?oi 1, y1, .. . ,
yk eeiaeii iacaaeneiu iaa Q. Oiaaa nouanoao?o k ?1 ?enae ec xyi
, ?oi
1, x e iie eeiaeii iacaaeneiu iaa Q.
2.5 A?eoiaoe?aneea naienoaa e?aoiuo acaoa-cia?aiee 37
Aieacaoaeunoai. Aoaai aieacuaaou io i?ioeaiiai. Ionou ?enea 1, x, xyi
,
i = 1, . . . , k ?1 eeiaeii caaeneiu iaa Q. O.a. nouanoao?o oaeea oaeua A1,
B1 e C1i
, ia ?aaiua iaiia?aiaiii ioe?, ?oi
A1 + B1x +
X
k?1
i=1
C1ixyi = 0.
Anee A1 = 0, oi iiaaeea yoi ?aaainoai ia x, iieo?ei, ?oi 1 e ?enea yi
, i =
1, . . . , k ?1 eeiaeii caaeneiu, ?oi ii oneiae? ia oae. Anee au ana C1i = 0,
oi x auei au ?aoeiiaeuiui. Neaaiaaoaeuii, nouanoaoao p ? [1, k ?1], ?oi
C1p 6= 0. Ionou oaeua A2, B2 e C2i
, ia ?aaiua iaiia?aiaiii ioe? oaeiau,
?oi
A2 + B2x +
X
16i6k,i6=p
C2ixyi = 0.
Aiaeiae?ii, A2 6= 0. Oiii?ei ia?aia ?aaainoai ia A2 e au?oai aoi?ia
?aaainoai, oiii?aiiia ia A1. Iieo?ei (iieaaay C1k = 0, C2p = 0)
(B1A2 ? B2A1)x +
X
k
i=1
(C1iA2 ? C2iA1)xyi = 0.
Iiaaeei yoi ?aaainoai ia x. Oiaaa iieo?ei eeiaeio? oi?io io 1, yi
, i?e-
?ai eiyooeoeaio i?e yp aoaao ?aaai C1pA2 6= 0, i?ioeai?a?ea n eeiaeiie
iacaaeneiinou? 1 e ?enae yi
. Eaiia aieacaia.
Neaanoaea 2.5 I?e e?aii iaoo?aeuiii l ?enea 1, ?(3) e eaeea-oi l
?enae ec ?(3)?(2k), k = 1, . . . , l + 1 eeiaeii iacaaeneiu iaa Q.
Aieacaoaeunoai. A eaiia 2.9 aicuiai x = ?(3), yk = ?(2k).
Ec yoiai neaanoaey auoaeaao a?oaia
Neaanoaea 2.6 Anee Mw - iii?anoai aaeoi?ia aana w oaeeo, ?oi ana
e?aoiua acaoa-ooieoee aana w au?a?a?ony ?aoeiiaeuiui ia?acii ?a-
?ac ?(~s), ~s ? Mw, oi nouanoao?o l oaeeo aaeoi?ia ~ti ?aciiai aana,
i ? {5, 7, . . . , 2l + 5}, ~ti ? Mi
, ?oi 1, ?(3) e ?enea ?(~ti) eeiaeii iacaaene-
iu iaa Q.
2.5 A?eoiaoe?aneea naienoaa e?aoiuo acaoa-cia?aiee 38
Ii aeiioaca 1 a ea?anoaa Mw ii?ii acyou Bw. Anee oae, oi
dimQ(Q ?
M
~s?B3?···?B2l+5
Q?(~s)) l + 2.
Oae?a, i?aaeaii,
dimQ(Q ?
M
~s?B2?···?B2l
Q?(~s)) l + 1.
Neaanoaea 2.7 Nouanoaoao oaeia
~s0 ? {(2, 3),(3, 2),(2, 2, 3),(2, 3, 2),(3, 2, 2)},
?oi ?enea 1, ?(3) e ?(~s0) eeiaeii iacaaeneiu iaa Q.
Aieacaoaeunoai. I?eiaiei neaanoaea 2.6 i?e l = 1, auae?ay M5 =
{(2, 3),(3, 2)} e M7 = {(2, 2, 3),(2, 3, 2),(3, 2, 2)}.
Aeaaa 3 ?acei?aiey e?aoiuo eioaa?aeia a eeiaeiua oi?iu 39
Aeaaa 3
?acei?aiey e?aoiuo
eioaa?aeia a eeiaeiua
oi?iu
O?a eeanne?aneei ?acoeuoaoii yaeyaony i?aanoaaeaiea aeia?aaiiao-
?e?aneiai eioaa?aea
Z
[0,1]m
Qm
i=1 x
ai?1
i
(1 ? xi)
bi?ai?1
(1 ? zx1x2 . . . xm)
a0
dx1dx2 . . . dxm
i?e iaoo?aeuiuo ai
, bi a aeaa Pm
s=0 Ps(z
?1
) Lis(z) (ni., iai?eia?, [16, Proposition
1, Lemma 1, Lemma 2]). Caanu e aaeaa eiyooeoeaiou i?e (iaia-
uaiiuo) iieeeiaa?eoiao a ?acei?aiee eioaa?aeia iiiai?eaiu n ?a-
oeiiaeuiuie eiyooeoeaioaie.
A ?aaioao [20], [21] A.I. Ni?ieei ii nouanoao aieacae oi?aanoaa
Z
[0,1]3
x
n
1
(1 ? x1)
nx
n
2
(1 ? x2)
nx
n
3
(1 ? x3)
n
(1 ? zx1x2)
n+1(1 ? zx1x2x3)
n+1 dx1dx2dx3 (3.1)
= P2,1(z
?1
) Le2,1(z) + P1,1(z
?1
) Le1,1(z) + P1(z
?1
) Le1(z) + P?(z
?1
)
e
Z
[0,1]2l
Q2l
i=1 x
ai?1
i
(1 ? xi)
n
Ql
j=1(1 ? zx1x2 . . . x2j )
n+1
dx1dx2 . . . dx2l (3.2)
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 40
=
X
l
k=0
Pk(z
?1
) Li{2}k
(z) +X
l?1
k=0
Tk(z
?1
) Li1,{2}k
(z),
aaa a2j?1 = a2j = (l + 1 ? j)(n + 1) ? ?, 0 6 ? 6 l 6 n. Nouanoaiaaiea
oaeiai ?acei?aiey auei iieacaii n iiiiuu? aii?ieneiaoee Iaaa.
A aaiiie aeaaa iu eco?ei iaiauaiea yoeo oaeoia, a eiaiii ?acei?a-
iea eioaa?aea
S(z) = Z
[0,1]m
Qm
i=1 x
ai?1
i
(1 ? xi)
bi?ai?1
Ql
j=1(1 ? zx1x2 . . . xrj
)
cj
dx1dx2 . . . dxm,
0 = r0 r1 r2 · · · rl = m.
a eeiaeiua oi?iu io iaiauaiiuo iieeeiaa?eoiia. Aoaoo eniieuciaaou-
ny neaao?uea iaicia?aiey. Aoaai ienaou, ?oi ~u 6 ~v, anee aeeiu yoeo
aaeoi?ia ?aaiu e ui 6 vi i?e e?aii i = 1, . . . , l(~u) = l(~v). Iaciaai aaeoi?
~u iia?eiaiiui aaeoi?o ~v, anee ~u 6 ~v eee ~u 6 v~0 aey iaeioi?iai aaeoi?a
v~0
, iieo?aiiiai ec aaeoi?a ~v au?a?eeaaieai ianeieueeo eiiiiiaio a i?i-
ecaieuiuo ianoao. Aunioie iiiai?eaia iaciaai iaeneioi iiaoeae aai
eiyooeoeaioia.
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo
eioaa?aeia
Eaiia 3.1 Iaiauaiiua iieeeiaa?eoiu Les1,s2,...,sn
(z) n ?acee?iuie ia-
ai?aie eiaaenia eeiaeii iacaaeneiu iaa C(z).
Aieacaoaeunoai. Ecaanoii, ?oi iaiauaiiua iieeeiaa?eoiu Lis1,s2,...,sn
(z)
n ?acee?iuie iaai?aie eiaaenia eeiaeii iacaaeneiu iaa C(z) (ni. [37],
[23]). Iaai?u ooieoee {Le~s(z)} e {Li~s(z)} n w(~s), ia i?aainoiayuei iaei-
oi?iai oeene?iaaiiiai ?enea e oii?yai?aiiuo ii aic?anoaie? aeeiu
~s, naycaiu i?aia?aciaaieai c aa?oiao?aoaieuiie iao?eoae n iaioeaauie
aeaaiiaeuiuie yeaiaioaie (ni. [23, ioieo 3])
Le~s(z) = Li~s(z) +X
~t
Li~t
(z),
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 41
aaa aaeoi?a ~t a noiia eia?o oio ?a aan, ?oi e ~s, ii iaiuoo? aeeio. Ioeoaa
e neaaoao eeiaeiay iacaaeneiinou Le~s(z) iaa C(z).
Neaanoaea 3.1 Anee ooieoey f(z) eiaao i?aanoaaeaiea a aeaa eiia?-
iie noiiu P
~s P~s(z
?1
) Le~s(z), P~s(x) iiiai?eaiu, oi yoi i?aanoaaeaiea
aaeinoaaiii.
Ii?aaaeei eiaaen ?aoeiiaeuiie ooieoee R(x) = P(x)
Q(x)
eae I(R) =
deg P ? deg Q. Ooieoee R(?1, ?2, . . . , ?l) = R1(?1)· · · Rl(?l) io ianeieueeo
ia?aiaiiuo niiinoaaei aaeoi? ec eiaaenia (I(R1), . . . , I(Rl)).
Oai?aia 3.1 Ionou aey ooieoee R(?1, ?2, . . . , ?l) = R1(?1). . . Rl(?l) au-
iieiyaony ia?aaainoai I(R1) + I(R2) + · · · + I(Rj ) + j 6 0 aey e?aiai
j = 1, . . . , l e ana iie?na Rj ea?ao a iii?anoaa {0, ?1, ?2, . . . }. I?e
yoii iaicia?ei mj iaeneiaeuiue ec ii?yaeia yoeo iie?nia, p e P
niioaaonoaaiii ieieiaeuiia e iaeneiaeuiia cia?aiey aanie?oiuo
aaee?ei iie?nia anao ooieoee Rj
.
Oiaaa i?e z ? C, z 1 noiia
X
n1n2...nl1
R(n1, n2, . . . , nl)z
n1?1
(3.3)
i?aanoaaeyaony a aeaa
X
~s
P~s(z
?1
) Le~s(z), (3.4)
aaa noiie?iaaiea aaaaony ii aaeoi?ai ~s, oaiaeaoai?y?uei oneiae?
~s 6 (m1 ? m2 ? · · · ? ml), aaa '' icia?aao eeai caiyoo?, eeai ie?n i?e
eaeii-eeai eo ?ani?aaaeaiee (a ?anoiinoe, aoaoo auiieiyouny ia?a-
aainoaa l(~s) 6 l e w(~s) 6 m1 + m2 + · · · + ml), a P~s(x) iiiai?eaiu n
?aoeiiaeuiuie eiyooeoeaioaie oaeea, ?oi
ord
z=0
P?(z) 1, ord
z=0
P~s(z) p + 1 i?e ~s 6= ?, deg P~s(x) 6 P + 1.
Aiiieieoaeuii, anee auiieiy?ony ia?aaainoaa
I(R1) + I(R2) + · · · + I(Rj ) + j 6 ?1, j = 1, . . . , l, (3.5)
oi P~s(1) = 0, aey aaeoi?ia ~s n s1 = 1.
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 42
Aiea?ai aia?aea neaao?uo? eaiio.
Eaiia 3.2 Ionou l iaoo?aeuiia ?enei e oai?aia 3.1 aa?ia aey ooie-
oee R(?1, ?2, . . . , ?r) = R1(?1)· · · Rr(?r) i?e r l (a neo?aa l = 1 ieeaeeo
i?aaiiei?aiee ia o?aaoaony). Oiaaa oai?aia aa?ia aey R(?1, ?2, . . . , ?l) =
R1(?1)R2(?2). . . Rl(?l), Rj (x) = 1
(x+pj )
uj
. Oneiaea (3.5) a yoii neo?aa ?aa-
iineeuii u1 2. Auniou iiiai?eaiia P~s ia i?aainoiayo
max(l! · (w(~u)2w(~u)
)
l?1P
l
, 1) (3.6)
e D
w(~u)?w(~s)
P P~s(z) ? Z[z].
Aieacaoaeunoai. O?aaoaony aieacaou oai?aio 3.1 aey noiiu
X
n1n2...nl1
z
n1?1Y
l
j=1
1
(nj + pj )
uj
, (3.7)
i?e?ai min
16j6l
pj = p, max
16j6l
pj = P. Oaeea noiiu aoaai aaeaa iacuaaou
yeaiaioa?iuie. Ionou r0 = 0, rj = u1 + u2 + · · · + uj
, m = rl = w(~u).
Eniieucoy eaiio 2.1, au?a?aiea (3.7) ii?ii caienaou a aeaa eioaa?aea
I(p1, p2, . . . , pl) = Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
pj
Ql
j=1(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm.
I?iaaaai eiaoeoe? ii aaee?eia p1 + p2 + · · · + pj
. I?e yoii iiea?ai
oieuei, ?oi noiia (3.7) i?aanoaaeia a aeaa (3.4), oae eae a ea?aii ec
?acae?aaiuo neo?aaa iao?oaii i?ineaaeou ca noaiaiyie iiiai?eaiia, a
oae?a ca ia?aie?aieai ia aaeoi?a iieo?a?ueony iaiauaiiuo iieeeiaa-
?eoiia.
Aaca eiaoeoee (p1 = p2 = · · · = pl = 0) neaaoao ec eaiiu 2.2 I(0, 0, . . . ,
0) = z
?1 Leu1,u2,...,ul
(z).
?anniio?ei neo?ae pj 0 aey e?aiai j = 1, . . . , l. Ec ?aaainoaa
x1x2 . . . xrl =
1 ? (1 ? zx1x2 . . . xrl
)
z
neaaoao, ?oi
I(p1, p2, . . . , pl) = z
?1
I(p1 ? 1, p2 ? 1, . . . , pl ? 1)
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 43
?z
?1
Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
pj?1
Ql?1
j=1(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm.
A iineaaiai eioaa?aea i?ieioaa?e?oai ii ia?aiaiiui xrl?1+1, xrl?1+2, . . . ,
xrl e iieo?aiiue eioaa?ae ?acei?ei a noiio ii eaiia 2.1
I(p1, p2, . . . , pl) = z
?1
I(p1 ? 1, p2 ? 1, . . . , pl ? 1)
? z
?1
·
1
p
ul
l
·
X
n1n2...nl?11
z
n1?1Y
l?1
j=1
1
(nj + pj ? 1)uj
.
Eioaa?ae I(p1 ? 1, p2 ? 1, . . . , pl ? 1) i?aanoaaeyaony a aeaa (3.4) ii i?aa-
iiei?aie? eiaoeoee, a au?eoaaiay noiia i?aanoaaeyaony a aeaa (3.4) ii
oneiae? eaiiu (iia caaeneo io l ? 1 ia?aiaiiie). Oaeei ia?acii ii?ii
n?eoaou p = min
16j6l
pj = 0.
Ionou oaia?u ph 0 i?e iaeioi?ii h 1. Caieoai ?aaainoai
(xrh?1+1xrh?1+2 . . . xrh
)
ph = (xrh?1+1xrh?1+2 . . . xrh
)
ph?1
+(xrh?1+1xrh?1+2 . . . xrh
)
ph
(1 ? zx1x2 . . . xrh?1
)
?(xrh?1+1xrh?1+2 . . . xrh
)
ph?1
(1 ? zx1x2 . . . xrh
),
ec eioi?iai neaaoao
I(p1, p2, . . . , ph, . . . , pl) = I(p1, p2, . . . , ph ? 1, . . . , pl)
+
Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
pj
Ql
j=1
j6=h?1
(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm
?
Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
p
0
j
Ql
j=1
j6=h
(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm,
aaa p
0
j = pj i?e j 6= h e p
0
h = ph ? 1. Eniieucoy eaiio 2.1, ia?aieoai yoi
?aaainoai eae
I(p1, p2, . . . , ph, . . . , pl)
= I(p1, p2, . . . , ph ? 1, . . . , pl) (3.8)
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 44
+
X
n1n2...nl?11
z
n1?1
h
Y?2
j=1
1
(nj + pj )
uj
?
1
(nh?1 + ph?1)
uh?1 (nh?1 + ph)
uh
·
Y
l?1
j=h
1
(nj + pj+1)
uj+1
(3.9)
?
X
n1n2...nl?11
z
n1?1
h
Y?1
j=1
1
(nj + pj )
uj
?
1
(nh + ph ? 1)uh(nh + ph+1)
uh+1
·
Y
l?1
j=h+1
1
(nj + pj+1)
uj+1
(3.10)
A neo?aa h = l au?eoaaiay noiia auaeyaeo eae
1
p
ul
l
X
n1n2...nl?11
z
n1?1Y
l?1
j=1
1
(nj + pj )
uj
E I(p1, p2, . . . , ph ? 1, . . . , pl) i?eiaieii i?aaiiei?aiea eiaoeoee, a aaa
a?oaea noiiu ii oneiae? eaiiu i?aanoaaey?ony a aeaa (3.4).
Inoaaony aieacaou ooaa??aaiea eaiiu aey eioaa?aea
I(p1, 0, . . . , 0) = Z
[0,1]m
(x1x2 . . . xr1
)Yoa aeiioaca auea i?iaa?aia aey ~s0 n aanii 6 16.
Aeiioaca 2. Ana cia?aiey ?(~s), ~s ? B e 1 eeiaeii iacaaeneiu iaa Q.
Anee aeiioaca 2 aa?ia, oi i?aanoaaeaiea a aeaa eeiaeiie oi?iu ec
aeiioacu 1 aaeinoaaiii. Ec yoeo aaoo aeiioac neaaoao, ?oi ?acia?iinou
eeiaeiiai i?ino?ainoaa, ii?i?aaiiiai e?aoiuie acaoa-cia?aieyie aana
w ?aaia dw, aaa ?enea dw ii?aaaey?ony i?iecaiayuae ooieoeae
X
?
w=0
dwx
w =
1
1 ? w2 ? w3
.
Oae eae ?({2}k) = ?
2k(2k + 1)!, oi yoe cia?aiey e??aoeiiaeuiu (e
aa?a eeiaeii iacaaeneiu iaa Q ia?ao niaie e 1). Oae?a, ii oai?aia
Aia?e, e??aoeiiaeuii ?enei ?(3). Ioiineoaeuii a?eoiaoe?aneeo naienoa
?(~s) i?e a?oaeo ~s ? B ieeaeie ii?aaaeaiinoe iiea iao.
Ionou eaeia-oi ?(~s0) ? Q, w(~s0) ia?aoii. Anee ?(~s0)?(2k) i?aanoaa-
eyaony a aeaa eeiaeiie eiiaeiaoee n ?aoeiiaeuiuie eiyooeoeaioaie
?enae ?(~s), ~s ? Bw( ~s0)+2k (a oae e aie?ii auou ii aeiioaca 1), oi neaai-
aaoaeuii n?aae yoeo ?enae anou oioy au iaii e??aoeiiaeuiia. Iai?eia?,
anee ?(2, 3) ? Q eee ?(3, 2) ? Q, oi iaii ec ?enae ?(3, 2, 2), ?(2, 3, 2) e
?(2, 2, 3) e??aoeiiaeuii. Aiaeiae?ii, anee eaeia-oi ?(~s0) ? Q, w(~s0)
?aoiia e ?(~s0)?(3) i?aanoaaeyaony a aeaa eeiaeiie eiiaeiaoee n ?aoei-
iaeuiuie eiyooeoeaioaie ?enae ?(~s), ~s ? Bw( ~s0)+3, oi n?aae ieo anou oioy
au iaii e??aoeiiaeuiia.
Aaeaa iu aiea?ai iaeioi?ue ?acoeuoao i eeiaeiie iacaaeneiinoe
e?aoiuo acaoa-cia?aiee.
Eaiia 2.9 Ionou x ? Q, ?enea yi
, i = 1, . . . , k oaeea, ?oi 1, y1, .. . ,
yk eeiaeii iacaaeneiu iaa Q. Oiaaa nouanoao?o k ?1 ?enae ec xyi
, ?oi
1, x e iie eeiaeii iacaaeneiu iaa Q.
2.5 A?eoiaoe?aneea naienoaa e?aoiuo acaoa-cia?aiee 37
Aieacaoaeunoai. Aoaai aieacuaaou io i?ioeaiiai. Ionou ?enea 1, x, xyi
,
i = 1, . . . , k ?1 eeiaeii caaeneiu iaa Q. O.a. nouanoao?o oaeea oaeua A1,
B1 e C1i
, ia ?aaiua iaiia?aiaiii ioe?, ?oi
A1 + B1x +
X
k?1
i=1
C1ixyi = 0.
Anee A1 = 0, oi iiaaeea yoi ?aaainoai ia x, iieo?ei, ?oi 1 e ?enea yi
, i =
1, . . . , k ?1 eeiaeii caaeneiu, ?oi ii oneiae? ia oae. Anee au ana C1i = 0,
oi x auei au ?aoeiiaeuiui. Neaaiaaoaeuii, nouanoaoao p ? [1, k ?1], ?oi
C1p 6= 0. Ionou oaeua A2, B2 e C2i
, ia ?aaiua iaiia?aiaiii ioe? oaeiau,
?oi
A2 + B2x +
X
16i6k,i6=p
C2ixyi = 0.
Aiaeiae?ii, A2 6= 0. Oiii?ei ia?aia ?aaainoai ia A2 e au?oai aoi?ia
?aaainoai, oiii?aiiia ia A1. Iieo?ei (iieaaay C1k = 0, C2p = 0)
(B1A2 ? B2A1)x +
X
k
i=1
(C1iA2 ? C2iA1)xyi = 0.
Iiaaeei yoi ?aaainoai ia x. Oiaaa iieo?ei eeiaeio? oi?io io 1, yi
, i?e-
?ai eiyooeoeaio i?e yp aoaao ?aaai C1pA2 6= 0, i?ioeai?a?ea n eeiaeiie
iacaaeneiinou? 1 e ?enae yi
. Eaiia aieacaia.
Neaanoaea 2.5 I?e e?aii iaoo?aeuiii l ?enea 1, ?(3) e eaeea-oi l
?enae ec ?(3)?(2k), k = 1, . . . , l + 1 eeiaeii iacaaeneiu iaa Q.
Aieacaoaeunoai. A eaiia 2.9 aicuiai x = ?(3), yk = ?(2k).
Ec yoiai neaanoaey auoaeaao a?oaia
Neaanoaea 2.6 Anee Mw - iii?anoai aaeoi?ia aana w oaeeo, ?oi ana
e?aoiua acaoa-ooieoee aana w au?a?a?ony ?aoeiiaeuiui ia?acii ?a-
?ac ?(~s), ~s ? Mw, oi nouanoao?o l oaeeo aaeoi?ia ~ti ?aciiai aana,
i ? {5, 7, . . . , 2l + 5}, ~ti ? Mi
, ?oi 1, ?(3) e ?enea ?(~ti) eeiaeii iacaaene-
iu iaa Q.
2.5 A?eoiaoe?aneea naienoaa e?aoiuo acaoa-cia?aiee 38
Ii aeiioaca 1 a ea?anoaa Mw ii?ii acyou Bw. Anee oae, oi
dimQ(Q ?
M
~s?B3?···?B2l+5
Q?(~s)) l + 2.
Oae?a, i?aaeaii,
dimQ(Q ?
M
~s?B2?···?B2l
Q?(~s)) l + 1.
Neaanoaea 2.7 Nouanoaoao oaeia
~s0 ? {(2, 3),(3, 2),(2, 2, 3),(2, 3, 2),(3, 2, 2)},
?oi ?enea 1, ?(3) e ?(~s0) eeiaeii iacaaeneiu iaa Q.
Aieacaoaeunoai. I?eiaiei neaanoaea 2.6 i?e l = 1, auae?ay M5 =
{(2, 3),(3, 2)} e M7 = {(2, 2, 3),(2, 3, 2),(3, 2, 2)}.
Aeaaa 3 ?acei?aiey e?aoiuo eioaa?aeia a eeiaeiua oi?iu 39
Aeaaa 3
?acei?aiey e?aoiuo
eioaa?aeia a eeiaeiua
oi?iu
O?a eeanne?aneei ?acoeuoaoii yaeyaony i?aanoaaeaiea aeia?aaiiao-
?e?aneiai eioaa?aea
Z
[0,1]m
Qm
i=1 x
ai?1
i
(1 ? xi)
bi?ai?1
(1 ? zx1x2 . . . xm)
a0
dx1dx2 . . . dxm
i?e iaoo?aeuiuo ai
, bi a aeaa Pm
s=0 Ps(z
?1
) Lis(z) (ni., iai?eia?, [16, Proposition
1, Lemma 1, Lemma 2]). Caanu e aaeaa eiyooeoeaiou i?e (iaia-
uaiiuo) iieeeiaa?eoiao a ?acei?aiee eioaa?aeia iiiai?eaiu n ?a-
oeiiaeuiuie eiyooeoeaioaie.
A ?aaioao [20], [21] A.I. Ni?ieei ii nouanoao aieacae oi?aanoaa
Z
[0,1]3
x
n
1
(1 ? x1)
nx
n
2
(1 ? x2)
nx
n
3
(1 ? x3)
n
(1 ? zx1x2)
n+1(1 ? zx1x2x3)
n+1 dx1dx2dx3 (3.1)
= P2,1(z
?1
) Le2,1(z) + P1,1(z
?1
) Le1,1(z) + P1(z
?1
) Le1(z) + P?(z
?1
)
e
Z
[0,1]2l
Q2l
i=1 x
ai?1
i
(1 ? xi)
n
Ql
j=1(1 ? zx1x2 . . . x2j )
n+1
dx1dx2 . . . dx2l (3.2)
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 40
=
X
l
k=0
Pk(z
?1
) Li{2}k
(z) +X
l?1
k=0
Tk(z
?1
) Li1,{2}k
(z),
aaa a2j?1 = a2j = (l + 1 ? j)(n + 1) ? ?, 0 6 ? 6 l 6 n. Nouanoaiaaiea
oaeiai ?acei?aiey auei iieacaii n iiiiuu? aii?ieneiaoee Iaaa.
A aaiiie aeaaa iu eco?ei iaiauaiea yoeo oaeoia, a eiaiii ?acei?a-
iea eioaa?aea
S(z) = Z
[0,1]m
Qm
i=1 x
ai?1
i
(1 ? xi)
bi?ai?1
Ql
j=1(1 ? zx1x2 . . . xrj
)
cj
dx1dx2 . . . dxm,
0 = r0 r1 r2 · · · rl = m.
a eeiaeiua oi?iu io iaiauaiiuo iieeeiaa?eoiia. Aoaoo eniieuciaaou-
ny neaao?uea iaicia?aiey. Aoaai ienaou, ?oi ~u 6 ~v, anee aeeiu yoeo
aaeoi?ia ?aaiu e ui 6 vi i?e e?aii i = 1, . . . , l(~u) = l(~v). Iaciaai aaeoi?
~u iia?eiaiiui aaeoi?o ~v, anee ~u 6 ~v eee ~u 6 v~0 aey iaeioi?iai aaeoi?a
v~0
, iieo?aiiiai ec aaeoi?a ~v au?a?eeaaieai ianeieueeo eiiiiiaio a i?i-
ecaieuiuo ianoao. Aunioie iiiai?eaia iaciaai iaeneioi iiaoeae aai
eiyooeoeaioia.
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo
eioaa?aeia
Eaiia 3.1 Iaiauaiiua iieeeiaa?eoiu Les1,s2,...,sn
(z) n ?acee?iuie ia-
ai?aie eiaaenia eeiaeii iacaaeneiu iaa C(z).
Aieacaoaeunoai. Ecaanoii, ?oi iaiauaiiua iieeeiaa?eoiu Lis1,s2,...,sn
(z)
n ?acee?iuie iaai?aie eiaaenia eeiaeii iacaaeneiu iaa C(z) (ni. [37],
[23]). Iaai?u ooieoee {Le~s(z)} e {Li~s(z)} n w(~s), ia i?aainoiayuei iaei-
oi?iai oeene?iaaiiiai ?enea e oii?yai?aiiuo ii aic?anoaie? aeeiu
~s, naycaiu i?aia?aciaaieai c aa?oiao?aoaieuiie iao?eoae n iaioeaauie
aeaaiiaeuiuie yeaiaioaie (ni. [23, ioieo 3])
Le~s(z) = Li~s(z) +X
~t
Li~t
(z),
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 41
aaa aaeoi?a ~t a noiia eia?o oio ?a aan, ?oi e ~s, ii iaiuoo? aeeio. Ioeoaa
e neaaoao eeiaeiay iacaaeneiinou Le~s(z) iaa C(z).
Neaanoaea 3.1 Anee ooieoey f(z) eiaao i?aanoaaeaiea a aeaa eiia?-
iie noiiu P
~s P~s(z
?1
) Le~s(z), P~s(x) iiiai?eaiu, oi yoi i?aanoaaeaiea
aaeinoaaiii.
Ii?aaaeei eiaaen ?aoeiiaeuiie ooieoee R(x) = P(x)
Q(x)
eae I(R) =
deg P ? deg Q. Ooieoee R(?1, ?2, . . . , ?l) = R1(?1)· · · Rl(?l) io ianeieueeo
ia?aiaiiuo niiinoaaei aaeoi? ec eiaaenia (I(R1), . . . , I(Rl)).
Oai?aia 3.1 Ionou aey ooieoee R(?1, ?2, . . . , ?l) = R1(?1). . . Rl(?l) au-
iieiyaony ia?aaainoai I(R1) + I(R2) + · · · + I(Rj ) + j 6 0 aey e?aiai
j = 1, . . . , l e ana iie?na Rj ea?ao a iii?anoaa {0, ?1, ?2, . . . }. I?e
yoii iaicia?ei mj iaeneiaeuiue ec ii?yaeia yoeo iie?nia, p e P
niioaaonoaaiii ieieiaeuiia e iaeneiaeuiia cia?aiey aanie?oiuo
aaee?ei iie?nia anao ooieoee Rj
.
Oiaaa i?e z ? C, z 1 noiia
X
n1n2...nl1
R(n1, n2, . . . , nl)z
n1?1
(3.3)
i?aanoaaeyaony a aeaa
X
~s
P~s(z
?1
) Le~s(z), (3.4)
aaa noiie?iaaiea aaaaony ii aaeoi?ai ~s, oaiaeaoai?y?uei oneiae?
~s 6 (m1 ? m2 ? · · · ? ml), aaa '' icia?aao eeai caiyoo?, eeai ie?n i?e
eaeii-eeai eo ?ani?aaaeaiee (a ?anoiinoe, aoaoo auiieiyouny ia?a-
aainoaa l(~s) 6 l e w(~s) 6 m1 + m2 + · · · + ml), a P~s(x) iiiai?eaiu n
?aoeiiaeuiuie eiyooeoeaioaie oaeea, ?oi
ord
z=0
P?(z) 1, ord
z=0
P~s(z) p + 1 i?e ~s 6= ?, deg P~s(x) 6 P + 1.
Aiiieieoaeuii, anee auiieiy?ony ia?aaainoaa
I(R1) + I(R2) + · · · + I(Rj ) + j 6 ?1, j = 1, . . . , l, (3.5)
oi P~s(1) = 0, aey aaeoi?ia ~s n s1 = 1.
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 42
Aiea?ai aia?aea neaao?uo? eaiio.
Eaiia 3.2 Ionou l iaoo?aeuiia ?enei e oai?aia 3.1 aa?ia aey ooie-
oee R(?1, ?2, . . . , ?r) = R1(?1)· · · Rr(?r) i?e r l (a neo?aa l = 1 ieeaeeo
i?aaiiei?aiee ia o?aaoaony). Oiaaa oai?aia aa?ia aey R(?1, ?2, . . . , ?l) =
R1(?1)R2(?2). . . Rl(?l), Rj (x) = 1
(x+pj )
uj
. Oneiaea (3.5) a yoii neo?aa ?aa-
iineeuii u1 2. Auniou iiiai?eaiia P~s ia i?aainoiayo
max(l! · (w(~u)2w(~u)
)
l?1P
l
, 1) (3.6)
e D
w(~u)?w(~s)
P P~s(z) ? Z[z].
Aieacaoaeunoai. O?aaoaony aieacaou oai?aio 3.1 aey noiiu
X
n1n2...nl1
z
n1?1Y
l
j=1
1
(nj + pj )
uj
, (3.7)
i?e?ai min
16j6l
pj = p, max
16j6l
pj = P. Oaeea noiiu aoaai aaeaa iacuaaou
yeaiaioa?iuie. Ionou r0 = 0, rj = u1 + u2 + · · · + uj
, m = rl = w(~u).
Eniieucoy eaiio 2.1, au?a?aiea (3.7) ii?ii caienaou a aeaa eioaa?aea
I(p1, p2, . . . , pl) = Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
pj
Ql
j=1(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm.
I?iaaaai eiaoeoe? ii aaee?eia p1 + p2 + · · · + pj
. I?e yoii iiea?ai
oieuei, ?oi noiia (3.7) i?aanoaaeia a aeaa (3.4), oae eae a ea?aii ec
?acae?aaiuo neo?aaa iao?oaii i?ineaaeou ca noaiaiyie iiiai?eaiia, a
oae?a ca ia?aie?aieai ia aaeoi?a iieo?a?ueony iaiauaiiuo iieeeiaa-
?eoiia.
Aaca eiaoeoee (p1 = p2 = · · · = pl = 0) neaaoao ec eaiiu 2.2 I(0, 0, . . . ,
0) = z
?1 Leu1,u2,...,ul
(z).
?anniio?ei neo?ae pj 0 aey e?aiai j = 1, . . . , l. Ec ?aaainoaa
x1x2 . . . xrl =
1 ? (1 ? zx1x2 . . . xrl
)
z
neaaoao, ?oi
I(p1, p2, . . . , pl) = z
?1
I(p1 ? 1, p2 ? 1, . . . , pl ? 1)
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 43
?z
?1
Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
pj?1
Ql?1
j=1(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm.
A iineaaiai eioaa?aea i?ieioaa?e?oai ii ia?aiaiiui xrl?1+1, xrl?1+2, . . . ,
xrl e iieo?aiiue eioaa?ae ?acei?ei a noiio ii eaiia 2.1
I(p1, p2, . . . , pl) = z
?1
I(p1 ? 1, p2 ? 1, . . . , pl ? 1)
? z
?1
·
1
p
ul
l
·
X
n1n2...nl?11
z
n1?1Y
l?1
j=1
1
(nj + pj ? 1)uj
.
Eioaa?ae I(p1 ? 1, p2 ? 1, . . . , pl ? 1) i?aanoaaeyaony a aeaa (3.4) ii i?aa-
iiei?aie? eiaoeoee, a au?eoaaiay noiia i?aanoaaeyaony a aeaa (3.4) ii
oneiae? eaiiu (iia caaeneo io l ? 1 ia?aiaiiie). Oaeei ia?acii ii?ii
n?eoaou p = min
16j6l
pj = 0.
Ionou oaia?u ph 0 i?e iaeioi?ii h 1. Caieoai ?aaainoai
(xrh?1+1xrh?1+2 . . . xrh
)
ph = (xrh?1+1xrh?1+2 . . . xrh
)
ph?1
+(xrh?1+1xrh?1+2 . . . xrh
)
ph
(1 ? zx1x2 . . . xrh?1
)
?(xrh?1+1xrh?1+2 . . . xrh
)
ph?1
(1 ? zx1x2 . . . xrh
),
ec eioi?iai neaaoao
I(p1, p2, . . . , ph, . . . , pl) = I(p1, p2, . . . , ph ? 1, . . . , pl)
+
Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
pj
Ql
j=1
j6=h?1
(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm
?
Z
[0,1]m
Ql
j=1(xrj?1+1xrj?1+2 . . . xrj
)
p
0
j
Ql
j=1
j6=h
(1 ? zx1x2 . . . xrj
)
dx1dx2 . . . dxm,
aaa p
0
j = pj i?e j 6= h e p
0
h = ph ? 1. Eniieucoy eaiio 2.1, ia?aieoai yoi
?aaainoai eae
I(p1, p2, . . . , ph, . . . , pl)
= I(p1, p2, . . . , ph ? 1, . . . , pl) (3.8)
3.1 Iauay oai?aia i ?acei?aiee e?aoiuo eioaa?aeia 44
+
X
n1n2...nl?11
z
n1?1
h
Y?2
j=1
1
(nj + pj )
uj
?
1
(nh?1 + ph?1)
uh?1 (nh?1 + ph)
uh
·
Y
l?1
j=h
1
(nj + pj+1)
uj+1
(3.9)
?
X
n1n2...nl?11
z
n1?1
h
Y?1
j=1
1
(nj + pj )
uj
?
1
(nh + ph ? 1)uh(nh + ph+1)
uh+1
·
Y
l?1
j=h+1
1
(nj + pj+1)
uj+1
(3.10)
A neo?aa h = l au?eoaaiay noiia auaeyaeo eae
1
p
ul
l
X
n1n2...nl?11
z
n1?1Y
l?1
j=1
1
(nj + pj )
uj
E I(p1, p2, . . . , ph ? 1, . . . , pl) i?eiaieii i?aaiiei?aiea eiaoeoee, a aaa
a?oaea noiiu ii oneiae? eaiiu i?aanoaaey?ony a aeaa (3.4).
Inoaaony aieacaou ooaa??aaiea eaiiu aey eioaa?aea
I(p1, 0, . . . , 0) = Z
[0,1]m
(x1x2 . . . xr1
)
Мошенники 16.06.2017 в 16:08
Написал(а): Константин отрицательный
Это мошенники.Моя история: хотел купить проектор Epson EH-TW5300,позвонил оператору,он начал рассказывать что лучше взять не Epson так как у них очень много их возвращают(как оказалось ,они всем так говорят) ,а другой отличный "немецкий" проектор Ledminox-фирма,мол мало известная ,но очень качественная,а этот проектор с отличными характеристиками,да и стоит всего 40000 тысяч рублей,почти как и Epson.Согласился.Привезли быстро.Но при ближайшем рассмотрении замечательный "немецкий" проектор оказался дешевым китайским,на Али Экспрессе такие же,только под другим названием стоят 11-13 тысяч рублей.Из "немецкого" в нем только надпись на коробке,да и сайт фирмы в интернете не открывается.Позвонил на в Pixelive ,если честно,не сильно надеясь,попросил оформить возврат.Сказали что передадут мое пожелание в отдел качества или еще куда-то(на ходу,видимо,придумывали) и что нужно ждать.С тех пор телефоны на сайте на мои звонки перестали отвечать,идет постоянный гудок.Подал заявление в полицию и прокуратуру.Вот и вся история.Так что если хотите купить дешевый китайский проектор по цене "немецкого" ,т.е. в три цены,то вам в Pixelive(у них есть еще идентичный сайт под другим названием). А лучше обходите стороной этих воров и мошенников.И не ведитесь на положительные отзывы,они их сами пишут,поверьте.
Хорош 29.05.2017 в 10:44
Написал(а): Валерий Жданов положительный
По совету знакомого приобрел. Перелопатил отзывы, короче, ребята, всегда найдутся недовольные. Имейте ввиду конфликт эпл и самсунг.

Для дома подойдет, для офиса подойдет, если у вас кинотеатр нет, ну тут ясно и без отзыва.
Берите, думаю, не пожалеете!
можно обращаться 23.05.2017 в 15:39
Написал(а): Андрей положительный
Можно обратиться, даже если вы вообще не в курсах че щас за проекторы, Все расскажут , без психов и терпеливо
Благодарность 19.05.2017 в 11:33
Написал(а): Покупатель положительный
У меня лично курьер опоздал, но достака в город была быстрая
в целом, впечатления хорошие
Страницы:   1 2 3 4
 
Добавление отзыва
  Ваше Имя:
  Заголовок отзыва:
  Текст отзыва:
  Ваша оценка: положительный
нейтральный
отрицательный
  Введите код:

Поля, помеченные , являются обязательными для заполнения.
Пользовательское Соглашение вступает в силу с момента выражения Вами согласия с его условиями путем регистрации на интернет ресурсе www.shopaudit.ru.
1. Предмет Пользовательского Соглашения
Администрация Интернет Сайта www.shopaudit.ru (дальше ИС) предлагает Вам свои услуги на условиях, являющихся предметом настоящего Пользовательского Соглашения (дальше ПС). Соглашение может быть изменено администрацией интернет сайта, без какого-либо специального уведомления, новая редакция Соглашения вступает в силу по истечении 3 (трех) дней с момента ее размещения, если иное не предусмотрено новой редакцией Соглашения. Действующая редакция ПС всегда находится на странице по адресу: http://www.shopaudit.ru/content/9.html.
2. Описание услуг
ИС предлагает пользователям доступ а систему управления отзывами и комментариями написанными пользователем к определённому им интернет магазину. Все существующие на данный момент службы, а также любое развитие их и/или добавление новых является предметом настоящего ПС. Вы понимаете и соглашаетесь с тем, что все службы предоставляются «как есть» и что ИС не несет ответственности ни за какие задержки, сбои в работе ИС, неверную или ошибочно размещенную информацию пользователями ИС, удаление или не сохранность какой-либо пользовательской персональной информации. Для того чтобы воспользоваться службами ИС, необходимо иметь компьютер и доступ в Интернет (WWW). Все вопросы приобретения прав доступа в Сеть, покупки и наладки для этого соответствующего оборудования и программных продуктов решаются Вами самостоятельно и не подпадают под действие Соглашения. Обратите внимание, что некоторые службы ИС могут содержать информацию для взрослых. Данное ПС предписывает лицам, не достигшим 18 лет, воздержаться от доступа к этой информации.
3. Ваши обязательства по регистрации
Для того чтобы воспользоваться службами ИС, Вы соглашаетесь предоставить правдивую, точную и полную информацию о себе по вопросам, предлагаемым в Форме Регистрации, и поддерживать эту информацию в актуальном состоянии. Если Вы предоставляете неверную информацию или у ИС есть серьезные основания полагать, что предоставленная Вами информация неверна, неполна или неточна, ИС имеет право приостановить либо отменить Вашу регистрацию и отказать Вам в использовании своих служб (либо их частей).
4. Ваша регистрация, пароль и безопасность
По завершении процесса регистрации Вы получите логин и пароль для доступа к персонализированной части служб ИС. Вы несете ответственность за безопасность Вашего логина и пароля, а также за все, что будет сделано на ИС под Вашим логином и паролем. ИС имеет право запретить использование определенных логинов и/или изъять их из обращения. Вы соглашаетесь с тем, что Вы обязаны немедленно уведомить ИС о любом случае неавторизованного (не разрешенного Вами) доступа с Вашим логином и паролем и/или о любом нарушении безопасности, а также с тем, что Вы самостоятельно осуществляете завершение работы под своим паролем (кнопка «Выход») по окончании каждой сессии работы со службами ИС. ИС не отвечает за возможную потерю или порчу данных, которая может произойти из-за нарушения Вами положений этой части ПС.
5. Поведение зарегистрированного пользователя
Вы понимаете и принимаете, что за всю информацию, данные, текст, программы, музыку, звуки, фотографии, графику, видео, сообщения и другие материалы («контент»), размещенные для общего доступа или переданные в частном порядке, ответственно то лицо, которое этот контент произвело. Это означает, что Вы, а не ИС, полностью отвечаете за весь контент, который Вы загружаете, посылаете, передаете или каким-либо другим способом делаете доступным с помощью служб ИС. ИС не контролирует контент, передаваемый через его службы, и, следовательно, не гарантирует точность, полноту или качество этого контента. Вы понимаете, что, используя службы ИС, Вы можете увидеть контент, который является оскорбительным, недостойным или спорным. Ни при каких обстоятельствах ИС не несет ответственности за контент, созданный пользователями его служб.
Вы соглашаетесь не использовать службы ИС для:
  1. загрузки, посылки, передачи или любого другого способа размещения контента, который является незаконным, вредоносным, угрожающим, клеветническим, оскорбляет нравственность, нарушает авторские права, пропагандирует ненависть и/или дискриминацию людей по расовому, этническому, половому, религиозному, социальному признакам, содержит оскорбления в адрес конкретных лиц или организаций;
  2. нарушения прав несовершеннолетних лиц и/или причинение им вреда в любой форме;
  3. ущемления прав меньшинств;
  4. выдавания себя за другого человека или представителя организации и/или сообщества без достаточных на то прав, в том числе за сотрудников ИС, за модераторов форумов, за владельца сайта, а также введения в заблуждение относительно свойств и характеристик каких-либо субъектов или объектов;
  5. загрузки, посылки, передачи или любого другого способа размещения контента, который Вы не имеете права делать доступным по закону РФ или согласно каким-либо контрактным отношениям;
  6. загрузки, посылки, передачи или любого другого способа размещения контента, который затрагивает какой-либо патент, торговую марку, коммерческую тайну, копирайт или прочие права собственности и/или авторские и смежные с ним права третьей стороны;
  7. загрузки, посылки, передачи или любого другого способа размещения не разрешенной специальным образом рекламной информации, спама (в том числе и поискового), списков чужих адресов электронной почты, схем «пирамид», многоуровневого (сетевого) маркетинга (MLM), систем интернет-заработка и e-mail-бизнесов, «писем счастья», а также для участия в этих мероприятиях (отправка несогласованных писем со ссылками на предоставляемые ИС службы, включая почтовые адреса, сайты, закладки и т.п.) может считаться участием в запрещенных настоящим пунктом мероприятиях, даже если отправка производилась без непосредственного использования почтовых серверов ИС);
  8. загрузки, посылки, передачи или любого другого способа размещения каких-либо материалов, содержащих вирусы или другие компьютерные коды, файлы или программы, предназначенные для нарушения, уничтожения либо ограничения функциональности любого компьютерного или телекоммуникационного оборудования или программ, для осуществления несанкционированного доступа, а также серийные номера к коммерческим программным продуктам и программы для их генерации, логины, пароли и прочие средства для получения несанкционированного доступа к платным ресурсам в Интернете, а также размещения ссылок на вышеуказанную информацию;
  9. умышленного нарушения местного, российского законодательства или норм международного права;
  10. сбора и хранения персональных данных других лиц;
  11. нарушения нормальной работы веб-сайта ИС;
  12. применения любых форм и способов незаконного представительства других лиц в Сети;
  13. размещения ссылок на ресурсы Сети, содержание которых противоречит действующему законодательству РФ;
  14. содействия действиям, направленным на нарушение ограничений и запретов, налагаемых Соглашением.
Вы признаете, что ИС не обязан просматривать контент любого вида перед размещением, а также то, что ИС имеет право (но не обязанность) по своему усмотрению отказать в размещении или удалить любой контент, который доступен через одну из служб ИС. Вы согласны с тем, что Вы должны самостоятельно оценивать все риски, связанные с использованием контента, включая оценку надежности, полноты или полезности этого контента.
Вы понимаете, что технология работы служб может потребовать передачи Вашего контента по компьютерным сетям, а также изменения его для соответствия техническим требованиям.
6. Право пользования регистрацией на ИС
Вы соглашаетесь не воспроизводить, не повторять и не копировать, не продавать и не перепродавать, а также не использовать для каких-либо коммерческих целей какие-либо части служб ИС, использование служб или доступ к ним, кроме тех случаев, когда такое разрешение дано Вам ИС. Зарегистрировавшись на ИС, Вы получаете непередаваемое право пользоваться своей регистрацией (логином и паролем) для доступа к службам ИС. Вы не имеете права передавать свою регистрацию (логин и пароль) третьему лицу, а также не имеете права получать его от третьего лица иначе, чем с письменного согласия ИС. ИС не несет никакой ответственности ни по каким договорам между Вами и третьими лицами.
7. Общие положения об использовании и хранении
Вы признаете, что ИС может устанавливать ограничения в использовании служб, в том числе: срок хранения сообщений и любого другого контента, максимальное количество сообщений, которые могут быть посланы или получены одним зарегистрированным пользователем, максимальный размер почтового сообщения или дискового пространства, максимальное количество обращений к службе за указанный период времени и т.д. ИС может запретить автоматическое обращение к своим службам, а также прекратить прием любой информации, сгенерированной автоматически (например, почтового спама). ИС  по своему усмотрению может перестать поддерживать связность с сетями, нарушающими принципы взаимодействия. Администрация ИС может посылать своим пользователям информационные сообщения. ИС не несет ответственности ни за какие задержки, сбои, неверную или несвоевременную доставку, удаление или несохранность какой-либо пользовательской персональной информации. Вы согласны с тем, что ИС оставляет за собой право удалить пользователей, которые не использовали свой доступ в течение долгого времени. Вы также признаете, что ИС может поменять правила и ограничения в любое время, с или без предварительного уведомления.
9. Прекращение регистрации
Вы согласны с тем, что ИС оставляет за собой право прекратить действие Вашего логина и пароля на любой из служб и удалить любой контент по любой причине, в том числе при неиспользовании доступа или при нарушении ПС. ИС может в любой момент закрыть любую из своих служб, с или без предварительного уведомления. ИС также не несет никакой ответственности за прекращение доступа к своим службам.
10. Ссылки
Службы ИС могут содержать ссылки на другие ресурсы. Вы признаете и соглашаетесь с тем, что ИС не несет никакой ответственности за доступность этих ресурсов и за их контент, а также за любые последствия, связанные с использованием контента этих ресурсов.
11. Права собственности ИС
Вы признаете и соглашаетесь с тем, что службы ИС и все необходимые программы, связанные с ними, содержат конфиденциальную информацию, которая защищена законами об интеллектуальной собственности и прочими российскими и международными законами, а контент, предоставляемый Вам в процессе использования служб, защищен авторскими правами, торговыми марками, патентами и прочими соответствующими законами. Кроме случаев, специально оговоренных ИС или его рекламодателями, Вы соглашаетесь не модифицировать, не продавать, не распространять этот контент и программы, целиком либо по частям.
ИС предоставляет Вам личное неисключительное и непередаваемое право использовать программное обеспечение, предоставляемое в службах, на одном компьютере, при условии, что ни Вы сами, ни любые иные лица при содействии с Вашей стороны не будут копировать или изменять программное обеспечение; создавать программы, производные от программного обеспечения; проникать в программное обеспечение с целью получения кодов программ; осуществлять продажу, уступку, сдачу в аренду, передачу третьим лицам в любой иной форме прав в отношении программного обеспечения служб, предоставленных Вам по ПС, а также модифицировать службы, в том числе с целью получения несанкционированного доступа к ним.
12. Освобождение от гарантий
Вы понимаете и соглашаетесь с тем, что:
  1. Вы используете службы ИС на Ваш собственный риск. Службы предоставляются «как есть». ИС не принимает на себя никакой ответственности, в том числе и за соответствие службы цели пользователя;
  2. ИС не гарантирует, что: службы будут соответствовать Вашим требованиям; службы будут предоставляться непрерывно, быстро, надежно и без ошибок; результаты, которые могут быть получены с использованием служб, будут точными и надежными; качество какого-либо продукта, услуги, информации и пр., полученного с использованием служб, будет соответствовать Вашим ожиданиям; все ошибки в программах будут исправлены;
  3. Любые материалы, полученные Вами с использованием служб ИС, Вы можете использовать на свой собственный страх и риск, на Вас возлагается ответственность за любой ущерб, который может быть нанесен Вашему компьютеру и Вашим данным в результате загрузки этих материалов;
  4. ИС не несет ответственности за любые прямые или непрямые убытки, произошедшие из-за: использования либо невозможности использования службы; несанкционированного доступа к Вашим коммуникациям; заявления или поведение любого третьего лица в службах;
  5. При любых обстоятельствах ответственность ИС в соответствии со статьей 15 Гражданского кодекса России ограничена 10 000 (десятью тысячами) рублей и возлагается на него при наличии в его действиях вины.
13. Общая информация
13.1. ПС является юридически обязывающим договором между Вами и ИС и регламентирует использование Вами служб ИС. Соответствующими договорами на Вас также могут быть наложены дополнительные обязательства, связанные с использованием других служб, а также контента или программного обеспечения, принадлежащего третьей стороне.
13.2. Вы и ИС соглашаетесь на то, что все возможные споры по поводу ПС будут разрешаться по нормам российского права.
13.3. Ввиду безвозмездности услуг, оказываемых в рамках ПС, нормы о защите прав потребителей не могут быть к нему применимыми. В случае если ПС будет придан возмездный характер, в него будут внесены соответствующие изменения в целях соблюдения указанных норм.
13.4. Ничто в ПС не может пониматься как установление между Вами и ИС агентских отношений, отношений товарищества, отношений по совместной деятельности, отношений личного найма, либо каких-то иных отношений, прямо не предусмотренных ПС.
13.5. Признание судом какого-либо положения ПС недействительным или не подлежащим принудительному исполнению не влечет недействительности или неисполнимости иных положений Соглашения.
13.6. Бездействие со стороны ИС в случае нарушения Вами либо иными пользователями положений ПС не лишает ИС права предпринять соответствующие действия в защиту своих интересов позднее, а также не означает отказа ИС от своих прав в случае совершения в последующем подобных либо сходных нарушений.
15.12.2007
Я соглашаюсь с условиями пользовательского соглашения


Яндекс.Метрика